Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Aging (Albany NY) ; 13(15): 19920-19941, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1355316

ABSTRACT

Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune responses leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.


Subject(s)
Aging/immunology , Cellular Senescence/immunology , Immunosenescence , Lymphoid Tissue/immunology , COVID-19/immunology , Humans
2.
J Clin Invest ; 131(11)2021 06 01.
Article in English | MEDLINE | ID: covidwho-1249494

ABSTRACT

With increasing age, individuals are more vulnerable to viral infections such as with influenza or the SARS-CoV-2 virus. One age-associated defect in human T cells is the reduced expression of miR-181a. miR-181ab1 deficiency in peripheral murine T cells causes delayed viral clearance after infection, resembling human immune aging. Here we show that naive T cells from older individuals as well as miR-181ab1-deficient murine T cells develop excessive replication stress after activation, due to reduced histone expression and delayed S-phase cell cycle progression. Reduced histone expression was caused by the miR-181a target SIRT1 that directly repressed transcription of histone genes by binding to their promoters and reducing histone acetylation. Inhibition of SIRT1 activity or SIRT1 silencing increased histone expression, restored cell cycle progression, diminished the replication-stress response, and reduced the production of inflammatory mediators in replicating T cells from old individuals. Correspondingly, treatment with SIRT1 inhibitors improved viral clearance in mice with miR-181a-deficient T cells after LCMV infection. In conclusion, SIRT1 inhibition may be beneficial to treat systemic viral infection in older individuals by targeting antigen-specific T cells that develop replication stress due to miR-181a deficiency.


Subject(s)
COVID-19/immunology , Cellular Senescence/immunology , Histones/deficiency , MicroRNAs/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Animals , COVID-19/genetics , Cellular Senescence/genetics , Female , Histones/immunology , Humans , Male , Mice, Knockout , MicroRNAs/genetics , SARS-CoV-2/genetics , Sirtuin 1/genetics , Sirtuin 1/immunology
3.
Cells ; 10(3)2021 03 12.
Article in English | MEDLINE | ID: covidwho-1167427

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the global pandemic of coronavirus disease 2019 (COVID-19) and particularly exhibits severe symptoms and mortality in elderly individuals. Mounting evidence shows that the characteristics of the age-related clinical severity of COVID-19 are attributed to insufficient antiviral immune function and excessive self-damaging immune reaction, involving T cell immunity and associated with pre-existing basal inflammation in the elderly. Age-related changes to T cell immunosenescence is characterized by not only restricted T cell receptor (TCR) repertoire diversity, accumulation of exhausted and/or senescent memory T cells, but also by increased self-reactive T cell- and innate immune cell-induced chronic inflammation, and accumulated and functionally enhanced polyclonal regulatory T (Treg) cells. Many of these changes can be traced back to age-related thymic involution/degeneration. How these changes contribute to differences in COVID-19 disease severity between young and aged patients is an urgent area of investigation. Therefore, we attempt to connect various clues in this field by reviewing and discussing recent research on the role of the thymus and T cells in COVID-19 immunity during aging (a synergistic effect of diminished responses to pathogens and enhanced responses to self) impacting age-related clinical severity of COVID-19. We also address potential combinational strategies to rejuvenate multiple aging-impacted immune system checkpoints by revival of aged thymic function, boosting peripheral T cell responses, and alleviating chronic, basal inflammation to improve the efficiency of anti-SARS-CoV-2 immunity and vaccination in the elderly.


Subject(s)
COVID-19/immunology , Cellular Senescence/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Aged , Aged, 80 and over , Aging/immunology , Aging/pathology , Autoimmunity , COVID-19/physiopathology , Humans , Inflammation/immunology , Inflammation/pathology , SARS-CoV-2/immunology , Thymus Gland/drug effects , Thymus Gland/physiopathology , Thymus Gland/virology , COVID-19 Drug Treatment
4.
Exp Mol Med ; 52(12): 1871-1878, 2020 12.
Article in English | MEDLINE | ID: covidwho-1012677

ABSTRACT

Interleukin (IL)-11 evolved as part of the innate immune response. In the human lung, IL-11 upregulation has been associated with viral infections and a range of fibroinflammatory diseases, including idiopathic pulmonary fibrosis. Transforming growth factor-beta (TGFß) and other disease factors can initiate an autocrine loop of IL-11 signaling in pulmonary fibroblasts, which, in a largely ERK-dependent manner, triggers the translation of profibrotic proteins. Lung epithelial cells also express the IL-11 receptor and transition into a mesenchymal-like state in response to IL-11 exposure. In mice, therapeutic targeting of IL-11 with antibodies can arrest and reverse bleomycin-induced pulmonary fibrosis and inflammation. Intriguingly, fibroblast-specific blockade of IL-11 signaling has anti-inflammatory effects, which suggests that lung inflammation is sustained, in part, through IL-11 activity in the stroma. Proinflammatory fibroblasts and their interaction with the damaged epithelium may represent an important but overlooked driver of lung disease. Initially thought of as a protective cytokine, IL-11 is now increasingly recognized as an important determinant of lung fibrosis, inflammation, and epithelial dysfunction.


Subject(s)
Inflammation/etiology , Inflammation/metabolism , Interleukin-11/metabolism , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/metabolism , Signal Transduction , Animals , Biomarkers , Cellular Senescence/genetics , Cellular Senescence/immunology , Cytokines/metabolism , Disease Susceptibility , Fibroblasts/metabolism , Fibrosis , Humans , Inflammation/diagnosis , Inflammation Mediators/metabolism , MAP Kinase Signaling System , Respiratory Function Tests , Respiratory Tract Diseases/diagnosis
5.
Front Immunol ; 11: 573662, 2020.
Article in English | MEDLINE | ID: covidwho-895303

ABSTRACT

Bearing a strong resemblance to the phenotypic and functional remodeling of the immune system that occurs during aging (termed immunesenescence), the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), is characterized by an expansion of inflammatory monocytes, functional exhaustion of lymphocytes, dysregulated myeloid responses and the presence of highly activated senescent T cells. Alongside advanced age, male gender and pre-existing co-morbidities [e.g., obesity and type 2 diabetes (T2D)] are emerging as significant risk factors for COVID-19. Interestingly, immunesenescence is more profound in males when compared to females, whilst accelerated aging of the immune system, termed premature immunesenescence, has been described in obese subjects and T2D patients. Thus, as three distinct demographic groups with an increased susceptibility to COVID-19 share a common immune profile, could immunesenescence be a generic contributory factor in the development of severe COVID-19? Here, by focussing on three key aspects of an immune response, namely pathogen recognition, elimination and resolution, we address this question by discussing how immunesenescence may weaken or exacerbate the immune response to SARS-CoV-2. We also highlight how aspects of immunesenescence could render potential COVID-19 treatments less effective in older adults and draw attention to certain therapeutic options, which by reversing or circumventing certain features of immunesenescence may prove to be beneficial for the treatment of groups at high risk of severe COVID-19.


Subject(s)
Cellular Senescence/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Aging/immunology , Betacoronavirus/immunology , COVID-19 , Diabetes Mellitus, Type 2/immunology , Female , Humans , Male , Monocytes/immunology , Neutrophils/immunology , Obesity/immunology , Pandemics , Risk Factors , SARS-CoV-2 , T-Lymphocytes/immunology
6.
Aging Cell ; 19(10): e13237, 2020 10.
Article in English | MEDLINE | ID: covidwho-780667

ABSTRACT

SARS-CoV-2 is a novel betacoronavirus which infects the lower respiratory tract and can cause coronavirus disease 2019 (COVID-19), a complex respiratory distress syndrome. Epidemiological data show that COVID-19 has a rising mortality particularly in individuals with advanced age. Identifying a functional association between SARS-CoV-2 infection and the process of biological aging may provide a tractable avenue for therapy to prevent acute and long-term disease. Here, we discuss how cellular senescence-a state of stable growth arrest characterized by pro-inflammatory and pro-disease functions-can hypothetically be a contributor to COVID-19 pathogenesis, and a potential pharmaceutical target to alleviate disease severity. First, we define why older COVID-19 patients are more likely to accumulate high levels of cellular senescence. Second, we describe how senescent cells can contribute to an uncontrolled SARS-CoV-2-mediated cytokine storm and an excessive inflammatory reaction during the early phase of the disease. Third, we discuss the various mechanisms by which senescent cells promote tissue damage leading to lung failure and multi-tissue dysfunctions. Fourth, we argue that a high senescence burst might negatively impact on vaccine efficacy. Measuring the burst of cellular senescence could hypothetically serve as a predictor of COVID-19 severity, and targeting senescence-associated mechanisms prior and after SARS-CoV-2 infection might have the potential to limit a number of severe damages and to improve the efficacy of vaccinations.


Subject(s)
Aging/immunology , Cellular Senescence/immunology , Coronavirus Infections/physiopathology , Pneumonia, Viral/physiopathology , Age Factors , Aged , Betacoronavirus , Biomarkers/analysis , COVID-19 , Coronavirus Infections/mortality , Humans , Pandemics , Pneumonia, Viral/mortality , SARS-CoV-2 , Severity of Illness Index
7.
J Gerontol A Biol Sci Med Sci ; 76(3): e13-e18, 2021 02 25.
Article in English | MEDLINE | ID: covidwho-729140

ABSTRACT

Older adults are far more vulnerable to adverse health outcomes and mortality after contracting COVID-19. There are likely multiple age-related biological, clinical, and environmental reasons for this increased risk, all of which are exacerbated by underlying age-associated changes to the immune system as well as increased prevalence of chronic disease states in older adults. Innate immune system overactivity, termed the cytokine storm, appears to be critical in the development of the worst consequences of COVID-19 infection. Pathophysiology suggests that viral stimulation of the innate immune system, augmented by inflammatory signals sent from dying cells, ramps up into a poorly controlled outpouring of inflammatory mediators. Other aging-related changes in cells such as senescence as well as higher prevalence of chronic disease states also likely ramp up inflammatory signaling. This in turn drives downstream pathophysiological changes to pulmonary, cardiovascular, skeletal muscle, and brain tissues that drive many of the adverse health outcomes observed in older adults. This article provides an overview of the underlying etiologies of innate immune system activation and adaptive immune system dysregulation in older adults and how they potentiate the consequences of the COVID-19-related cytokine storm, and possible uses of this knowledge to develop better risk assessment and treatment monitoring strategies.


Subject(s)
Aging/immunology , COVID-19/immunology , COVID-19/physiopathology , Cytokine Release Syndrome/virology , Immunity, Innate , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Age Factors , Aged , Cellular Senescence/immunology , Cytokines/immunology , Humans , SARS-CoV-2 , Signal Transduction
9.
Cells ; 9(4)2020 04 08.
Article in English | MEDLINE | ID: covidwho-42137

ABSTRACT

The higher death rate caused by COVID-19 in older people, especially those with comorbidities, is a challenge for biomedical aging research. Here we explore the idea that an exacerbated inflammatory response, in particular that mediated by IL-6, may drive the deleterious consequences of the infection. Data shows that other RNA viruses, such as influenza virus, can display enhanced replication efficiency in senescent cells, suggesting that the accumulation of senescent cells with aging and age-related diseases may play a role in this phenomenon. However, at present, we are completely unaware of the response to SARS-CoV and SARS-COV-2 occurring in senescent cells. We deem that this is a priority area of research because it could lead to the development of several therapeutic strategies based on senotherapeutics or prevent unsuccessful attempts. Two of these senotherapeutics, azithromycin and ruxolitinib, are currently undergoing testing for their efficacy in treating COVID-19. The potential of these strategies is not only for ameliorating the consequences of the current emergence of SARS-CoV-2, but also for the future emergence of new viruses or mutated ones for which we are completely unprepared and for which no vaccines are available.


Subject(s)
Aging/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Global Health/trends , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Anti-Infective Agents/standards , Anti-Infective Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19 , Cellular Senescence/immunology , Humans , Interleukin-6/immunology , Nitriles , Pandemics , Pyrazoles/therapeutic use , Pyrimidines
SELECTION OF CITATIONS
SEARCH DETAIL